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Abstract: An integral part of successful risk management in modern financial markets is the accurate calculation of the
price sensitivities of the underlying asset. There are a number of recent research papers that have focused on this important
issue. A strand of literature has applied the finite difference method which is biased. Another strand of literature has made
use of the Malliavin calculus within a jump diffusion framework. However, the existing papers have provided the price
sensitivities by conditioning on some of the stochastic part of the complicated random process. The current paper provides
price sensitivities in jump diffusion model without conditioning on any stochastic part in the model. These estimates are
shown to be unbiased. Thus, the solution that is provided in this paper is expected to induce decision making under

uncertainty more precise.
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1 Introduction

The calculation of price sensitivities is a necessary
input for successful financial risk management. It is
widely agreed in the literature that the modeling of
financial derivatives is more precise if the process
of generating the future price of the underlying
asset is modeled as a jump-diffusion process®.
Several recent papers deal with this issue based on
a jump-diffusion formula that generates the
underlying asset price via a Brownian motion and a
Poisson process jointly. However, the calculations
of the price sensitivities are provided by
conditioning on either the Brownian motion or the
Poisson process. Thus, there is scope for further
research on this important topic by providing
unconditional calculations. The main contribution
of the current paper is therefore to provide an
approach for the calculation of the price
sensitivities when the underlying asset price is
generated by both a Brownian motion and a Poisson

! One of the most applied models for option pricing is the Black and
Scholes formula [5]. However, the Black and Scholes model suffers
from the continuity of the Brownian motion and thus from the
exclusion of jumps.

process simultaneously, i.e. a jump-diffusion model.
These calculations are provided via the Malliavin
calculus without conditioning on any random part in
the jump-diffusion process. The crucial advantage of
the Malliavin calculus is that it provides unbiased
estimators compared to the commonly used finite
difference approach that usually results in biased
estimators. Consequently, the solution that is provided
in this paper is expected to improve on the correctness
of the calculations of the underlying price sensitivities
for successful decision making under uncertainty. The
suggested method can be used for the computation
of the price sensitivities when the stochastic
process describing the stock’s price includes jumps.
There are five price sensitivities of a trading
position that are usually denoted as "Greeks" in the
financial literature. The importance of a precise
calculation of these Greeks is paramount pertinent to
immunization of underlying risk. The change of the
trading position with regard to the price of the
underlying asset is called Delta. The change of the delta
for a portfolio of options with regard to the price of the
underlying asset is known as Gamma. Another source of
risk in this context is signified as Vega, which represents
the sensitivity of the trading position with regard to a
change in the volatility of the underlying asset.
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The change of the portfolio with regard to time under the ceteris paribus condition is known as Theta.
Finally, the sensitivity of the trading position with regard to the interest rate is known as Rho in the
literature. Each Greek measures a source of risk for the underlying trading position. Traders need to
calculate their Greeks at the end of every trading day in order to take necessary action if the internal risk
exceeds the prespecified levels in the underlying financial institution that the trader is linked to, in order to
avoid dismissal. We utilize the Malliavin calculus to provide an accurate and operational solution for each
price sensitivity. This approach is particularly useful since the price of the option is characterized by a
stochastic structure that cannot be given in closed form. Therefore, the study of price sensitivities via this
approach is very important in this context. Via the Malliavin calculus we can transform the differentiation
into integration and thereby make the calculation of the unbiased price sensitivities operational. Most
previous work on the price sensitivities makes use of the finite difference method, which can be a biased
approach. However, the Malliavin method is unbiased and it is also less time consuming in terms of
convergence. There has been some work done on this issue using the Malliavin method. The main
contribution of this paper is to extend the Malliavin approach to calculating the price sensitivities when the
price of the underlying asset follows a jump-diffusion process. To ensure the market is arbitrage free, one
should find a probability equivalent to the historical one under which the discounted prices are martingale,
based on the first part of fundamental theorem of the asset pricing.

The application of the Malliavin calculus to the computations of price sensitivities was introduced by [13]
for markets with Brownian information. Their approach rests on the Malliavin derivative on the Wiener
space and consists of two parts-namely the application of the chain rule and utilizing the fact that this
derivative has an adjoint (Skorohod integral) which coincides with the 1t6 integral for adapted processes.
Recently in [10], this method has been used for markets suffering from a financial crash. However, several
papers employing this method have been developed for markets with jumps. For pure jump markets, [11]
use the Poisson noise via the jump times, while [1] differentiate with respect to both the jump times and
the amplitude of the jumps. For jump-diffusion models, [8] apply the Malliavin calculus with respect to the
Brownian motion while conditioning on the Poisson component. [2] allow the Poisson noise to act on the
amplitude of the jumps but not with regard to the timing of the jumps. However, in the previous works on
price sensitivities there have not been any calculations that take into proper account both stochastic
components simultaneously without conditioning on any part. More recently, for Lévy models, [18] acts
also on the jumps amplitude to establish a formula for the calculation of the price sensitivities. In other
recent papers, the robustness of the sensitivity is investigated. For instance, [3] study the robustness of the
sensitivity in Lévy models using a new conditional density method. In [4] the authors extend the method
developed in [8] to study the robustness of option prices in markets modeled by jump-diffusions. They
approximate the small jumps by a continuous martingale with approximately scaled variance. [14] uses the
same method to compute the Delta in a multidimensional jump-diffusion framework. In this paper, we
account for the timing of the jumps in the computations. Naturally, the timing of the jump is at least as
important if not more in financial terms as the size of the jump. For example, the timing of a financial
crisis can be more important than the potential size of the crisis.

The After this introduction the remaining part of the paper is organized as follows: Section two presents the
the model. In Section three we apply the Malliavin calculus to derive the formula for computing the
Greeks. The last Section concludes the paper. The appendix is devoted to Brownian and Poisson Malliavin
derivatives.

2 The model

In this paper we apply the Malliavin calculus to compute Greeks for options with payoff f(S;) for
discontinuous models. We consider a European option with maturity T . We assume that the underlying
asset price is driven by a jump diffusion model. The dynamic of (St)tem] under a risk neutral measure Q

IS



Y. El-Khatib and A. Hatemi-J: On the Calculation of Price Sensitivities... NS E 173

%: rdt+o,[dW, +dM,], te[0,T], S, =x>0,

t
where 1= (1)o7, and o =(0,),r; are deterministic functions denoting respectively the interest rate

and the volatility and the two processes W = (\W,),r; and M = (M, =N, —t), 1, are respectively a

Q -Brownian motion and a Q -compensated Poisson process. This means
k=N
N

T T 1
S, = xexp('foatdwt +L (r, — o, —EO-tZ)dtjx H(1+ GTk),

k=1
where (T, ),., denotes the jump times of (N, ), ,1;- Consider a standard Poisson process N = (N,), 5

with jump times (T;),_, and let H denote the Cameron-Martin space
H= {J :J;L]tdt:lje Lz(R+)}
for ue H and a smooth functional F, = f(T,,...,T,), f € C,(R"),n>1 of the Poisson process, we let
k=n
D' Fy =D Up 0, F (T, T).
k=1
Unfortunately, N, does not belong to Dom (DY), i.e. the domain of D" . Therefore, any underlying asset

price (S,),.,r formulated as

ds, = ,utStdtJrO'tSt_ (dN, —dt), eR,, S,=x>0,
does not belong to Dom (D") . Nevertheless, forT R, .LTStdt e Dom (D") since it can be written as

)dt i=k

t
[[sadt= kZ: J.TTkk:iATxe'[O(”t k Eo[(u o )t
In [11] only options with payoff of the form f(LTStdt) were considered and those with payoff f(S;)
were excluded. However, this paper can deal with both forms of the payoffs.
To show the point consider a smooth functional F = Z:jl{NT:n}Fn, m>1, where F,:= f(T,,...,T,)
and f e C;(R"). Let

DNF = 3 Ly .y D',
n=1

DV is a derivative and it has an adjoint (Skorohod integral) which coincides with the Itd integral for
adapted processes (see Prop.4 and Prop.5 in the appendix). Moreover N, belong to Dom(D"). In the
following section we show how the Greeks can be calculated.

3 Computations of Greeks

In this section we compute the Greeks using Malliavin calculus for European options with maturity T and
payoff f (S;). Let C = E[f(S¢)] be the price of the option, where ¢ is a parameter taking the values:
S, = X, the volatility o, or the interest rate r.The computations of Greeks by the Malliavin approach rest
on the integration by parts formula given in the following proposition®.

2 See [13] for the Brownian case and [11] for the Poisson case.
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Proposition 1 Let | be an open interval of R, (Fg)gEI and (Gg)gEI be two families of random
functionals in Dom(ISN)ﬂDom(DW), continuously differentiable with respect to the parameter{ e 1 .
Let (U,),qor; be a process satisfying

(D) +DY)F¢ £0, as.on{d,F¢ =0}, (el,
such that uGgagFgl(ﬁuN +D,')F* is continuous in ¢ in Dom (s™)(YDom (5") and J'OTutdt =0.We

have
9 elot(Fe =gl tre] 8% vy gy CT%FT
o) EHF {(SUMDXV)#(S Y D“((5UN+DZ“)F4

(D) +D;)F* (D) +D;)F*
for any function f such that f(Fg)e L*(Q).C .

Proof. For function f € C;(R), we have

%E[G4f(|:4)]= Elcca, f(F<)|+E[f (F*)p.G¢]

- E{GfégFg Ch +va)f(Fg)}+ E[f(F<)o,G¢]

(D" +DY)F¢
Then we conclude using Propositions 4 and 6 from the appendix A. The extensionto f (Fg)e L* (Q)

with £ e |, can be obtained from the same argument as in p. 400 of [13] for the Brownian case and in [11]
p. 167 for the Poisson case, using the bound

% Elc £, (F)]-E[f (F ¢ (5" )+ 8" ) - (BY + D V¢ +8¢G§)1

<|f(F) = F,(F) o VS (8" (W) +6" ()~ (D) + D} V¢ +0,G7|

L2(0) @)’
and an approximating sequence (), of smooth functions, whereV < := G6,F¢/(D}' + D! )F<.
It is worth mentioning here that the Malliavin method is unbiased. Indeed, the Malliavin method provides

a new representation of the sensitivities if Y := % E[Gg f (Fg)] is one of the price sensitivities, and Y
is its value using Malliavin method then we have by Proposition. 1 Y = Y, and thus E[Y,, ] = E[Y]. In

the other hand, the Finite Differences method gives an approximation of the sensitivities and we have
E[Y-]= E[Y].

3.1 Delta, Rho, Vega

Consider an option with payoff f (Fg). The Greeks Delta:= @ Rho = o< and Vega = o«

OX or oo
can be computed based on Proposition. 6 (presented in the appendix). That is

ZEIE el F I e @t w0l o] o
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0,.F¢
where we let G¢ =1 and L¢ := Wg—wg . As an example we compute the delta® of an European
(B, +D,)F

option using (1) with £ =x, f(F¢)=f(S;), and aglﬂ =0,S; zlsT . We have
X

T T
Delta=o,E e'[‘ TS eJt rSdSE[f (S, L™ + 8" )(u)— (DY + D)L )|

where

LX_l ST _1
~x(DV+DY)S. X u,o,
( u u)T J‘ ttdt J' th

And
Dﬁ,"’ L*=0

Npx — 1 x\2 _N Tuto-tl — _(1%X)2 4 uto-t'
¥ = (L)2D; U‘) o dth— (L) U"u‘atlwt dth

((atu +u at)—u (@)’ J N,,

+ 0y

O1

here we supposed that o #0.
We can use

SN (u) = judN ju(dN —dt) =Y, ,

k>0

5" (v) = jvdw v W W),

i1
for u predictable in H such that .[OTutdt =0 and V adapted.

3.2 Gamma
2

For computing the Gamma = 2—? we let H* := L (8™ (u) + 5" (u))— (DN + D )L*. By using
X

(1) and Proposition. 1 the following formula is obtained:

Gamma:e_J.Trdsa@X2 E[f( )] e_'[rdsa( E[f( )]j e_jrdsaE[f( ) ]

OX

:eft%"s{E{f(Fx{ _HOF 5N(U)_E~)UN[ _HOF m
(D" +D")F* (DY + D" )F*

A HOF o W HOF ey
+E{f(F {Wa (u)-D) [—(EUN+DLN)FXJH+ E[f(F*)o,H ]}

This formula can be used to calculate the change of Delta with regard to the underlying initial price more
accurately.

% We can use the same techniques for Rho and Vega.
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5 Conclusions

Making use of options is a common practice in financial markets by investors and other financial agents
for neutralizing or reducing the price risk of the underlying asset. Thus, option pricing is an integral part of
modern financial risk management. The accurate calculation of price sensitivities is a vital input in
financial risk management models. Previous literature suggests that modeling financial derivatives based
on a jump-diffusion process for generating the future price of the underlying asset is more precise. Several
recent papers attempt to tackle this problem based on a jump-diffusion model that consists of a Brownian
motion component and a Poisson process component jointly. Nevertheless, the price sensitivities are
calculated by conditioning on one of the stochastic parts, either the Brownian motion or the Poisson
process. Using Malliavin calculus, this paper provides the calculation of the price sensitivities in a situation
in which the underlying asset price is generated by both a Brownian motion and a Poisson process
simultaneously, i.e. a jump-diffusion model, without any conditioning on any random part in the jump-
diffusion process. It is also shown that the Malliavin calculus provides unbiased estimators unlike the
commonly used finite difference approach that are usually utilized in the existing literature.

Appendix

We give a brief presentation of the Malliavin derivative on the Wiener space and its adjoint. The
new version of the Poisson gradient introduced in [21] is also presented. The Poissonian operator is a
derivative and it admits an adjoint which coincides with the Poissonian Itd integral for adapted processes.
For more details about the Malliavin calculus we refer® to [17] and [15] on the Wiener space and to [6],
[71, [91, [12], [16], [19] and [21] on the Poisson space.

1. Malliavin derivative on the Wiener space

We denote by P the set of random variables F : Q2 — R, such that F has the representation
F(w) = f( [[f.odw,.....[ 1, (t)th),
where f(X,...,X,)= zaaaxa is a polynomial in N variables X,,..., X, and deterministic functions
f. e L*([0,T]) . Let ||||12 be the norm
IFl, =[Fl2 @ +[DY FHLZ([O,T]@)’ F < Dom (D).
We have P = Dom (D) and the following Proposition holds:

Proposition 2 Given F = fUOT f,(t)dW,,. ,Jj f, (t)th) € P . We have

prF=S 9 (j

> gk T f,(t)dW,,..., IOT f, (t)dwt) . (t).

0

From now on, for any stochastic process U and for F € Dom (DY) such that u DV F e L?([0,T]) we let
W ey W N LY
D'F = (D"F.u) = [, u,D}" Ft.
Skorohod integral
Let 5" be the Skorohod integral on the Wiener space. The next proposition is well known, it says that oV isthe
adjoint of DY and is an extension of the Itd integral (see for example [17]).

Proposition 3 a) Let U € Dom (6") and F € Dom (D"), we have

* The list is not exhaustive.
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E[F5Y (u)]=E[DYF], Forevery F e Dom(D").
b) Consider a L?(Qx[0, T]) -adapted stochastic process U = (U)o - We have
T
8" (u) = [ u,dw,.
¢) Let F e Dom(D") and u e Dom (8%) such that uF € Dom (6") thus
S (UF)=Fs"(u)-D}F
2. Poisson derivative

Let S denote the set of smooth functionals
F =31y .yF. Where F,=f,(T, - T,)eDom(D"), meN ={12..},
n=1
and for L<n<m, f eC;(R").

Definition 1 Given an element U of the Cameron-Martin space H and F € S as in the above, we define the
gradient®

k=n
D F:= Z{N —n}D F _Z{N —n}[ ZuTkak fn(Tl!“"Tn)j' 2
k=1

The next proposition shows that the gradient D" is a derivative.
Proposition 4 Consider F = Z o {N -mFnand G= Z L {N -G, two smooth functionals inS , where

F =f (T, ,T,)eDom(D") andG, =G, (T,,---,T.) € Dom(D") . We have
DM(FG) = FD'G +GD,'F.

Proof. We have
n=m
FG :(nz_;lN o n)(ZlN ,G) = ZlN PGy
Thanks to the chain rule of the gradient D™ we have
- n=m
D) (FG) = ;1{N -y FDJ'G, +Z wn,=mGa Dy Fy
= FD"G+GD/'F.
This ends the proof.
Remark 1 Let Dom (ISN) be the domain of D"

1. Dom (D" )CDom(D ). In fact any F e Dom(D") can be written as F = Z Ny -y F . Here

n=oo

m = oo and we have ISUN F= 1{NT =} D'F=D/F.

n=1

® See [21], section 7.3.
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2. Dom (D") contains N; and [~)UN N; =0,since N; = anol{ .

Ny

5.2.1 Adjoint
The following proposition gives the adjoint gradient for D", it is well-known, cf. e.g. [7], [19], [20].
Proposition 5 Consider F € Dom (D) andu € H , we have

a) The gradient D" is closable and admits an adjoint oN such that
E[Du'\I F1=E[Fs" (u)].
b) For u € Dom (™) such that uF € Dom (S™) we have
ON(UF)=Fs" (u) - DuN F.
c) Moreover & N coincides with the compensated Poisson stochastic integral on the adapted processes in L2 (;H):

SN ) = joTut (dN, —dt).

To be able to use the Malliavin method for the computations of Greeks we need to show first the existence of an
adjoint for D" satisfying the properties of oM listed in Proposition 5. The relationship between D" and D"

will be very helpful. In fact, we have &" is the adjoint of DV asitis shown in the following proposition®.
Proposition 6 With previous notations:

A) D" is closable and admits S" as adjoint. Moreover, if F:Z::TI{NT:n}Fn in S with

F =f (T, -,T,)eDom(D") and ue H such that .[OTL]tdt =0 then
E[D,. F]= E[F5" (u)].

b) For F,G e Dom(ISN) and u e Dom (") with .[)Tutdt =0:
EleD! F]=E[F(Gs" u)-D'G)|

Proof of the Proposition. 6
First, we need the following lemma.

Lemma 1 Consider U € H such that J:L]tdt =0 and a smooth functional f (T,,---,T.) € Dom (D"), we have
E[DN £ (T, T,) [Ny =n]=E[f (T,,--- T,)o" W) | N, =n].
Proof of the Lemma 1.
Proof. Let ueH such that _[()Tutdt =0 . we follow [20], Lemma 1. We consider the simplex
A, ={(t,...,t,)€[0,T]":0<t, <---<t } Wehavefor f €L*(A,,dt,...,dt ),

n oot t
BLf (T T INe =n] = [0 [2F (et )l
And

k=n
E[D; f (T, T,) IN; =n]=—> I,
k=1

T
® The proof of this proposition can be found in [21]: Section 7.3. However another proof is provided here with the condition .[0 Utdt =0.
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where

- nl ¢t t ty
|k__T_njOj0 U 0 (e )t Lt

We have by integration by parts

t t,
jozutlalf (t,--,t )dt, = —jozutl F(t - t)dt +u, Ft,t,t,).

Thus,
I,=A+B,,
where
t2.
= ___[ J. _[O utlf(tl""1tn)dt1---dtn
— - n t3
B = Fjo .[o .[0 U, (G, t,)dt, - dt
We have
I;autz .Ezaz f(, - t,)dtdt,
t t ¢
= J‘O3ut262j02f(tl,..-,tn)dtld'[2 _J'03ut2 f (tmtz,”',tn)dtz
t, ot ‘
= _L3ut2 Iozf (tl'tz,"'ntn)dtldtz +ut3.[03f (tl,tg,t3yt4)"'!tn)dt1
1.
_j03ut2f(tZ’tz""’tn)dtz-
Thus,
I2 = AZ_BZ+B3’
where

._——H [ 28 (Gt )t et
B, -—H U 27 (bt by, ) )dt
By using the same argument of the above, for any K €131+
f;k+1“tk(£ [0, F (et )t kl)dt
= [, ak(j‘k---fzf(tl,-- e, - kl)olt
= [ [P [P ettt )t o odiy
S O T
[, [ jtzf(tl,~,tk_1,tk+l, et )t -dt,dt - dt,
L L Tttt )

Thus fork €{3,---,n—1}, we have
=A -B +B 4,

B }, we have
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where

._-—” [ [ [P et )dt -

.[I .rkﬂ tkfkrk 2 Itzf(tl” oo bt £ dty CItk oAt

df, denotes the absence of df, .

Let
. nt ¢t ety t t,

TN 0 T
_nbr th [th-2 t R
_Fjloutn.[oj.o .[0 Ft et byt )dt - dt L, dt

we have
_nbemooty et

I, _T_”.Lutnfo IO 0. f(t, -t )dt,---dt

= T t anJ‘tn.[tnfl,..J';Zf(tl,...,tn)dtl...dtn_Bn

_AHF J.J.nl'j;zf(ty"nl’-r)dt _.-B

_A1_Bn1

- T. —
since Ioutdt—O.
Thus

k=n k=n-1
I, =(A+B,)+(A,—B,+B;)+ > (A —B,+B,,)+A —B,

k=1 k=3

k=n
= Ak
k=1
Then,
N k=n k=n

E[Du f(T1!"'aTn)|NT:n]:— Ik = — Ak

k=1 k=1
k=n

Nt et ey 1.
= T_”J.o Io "'J.o u‘kf(tl""’tn)dtl---dt
k=n
E f(Tl,...,Tn)(ZuTkj| N, = n}.
k=1

Now to show that

E f(lenTn)[kiuTkjl N, :n}: E[f (T, T,)s" )N, =n],

it is sufficient to prove

E f(l'l,---,Tn)(kZuTk —Lnutdtj| N, = n} =0,
L >n

.

since J:) U,dt = 0. Recall that for K > n we have

E[f(Tﬂ“'!Tn’“'!Tk)' N, = n]:
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Ti:e—Tj:e“k [ PR et b0 dt

Therefore for K > n

E[Fd, | N, —n]:—e-T u, ‘kj j If(tl,-,tn)dg...dtk

N L Y -t Ty n 2
=o' fue Ojo ...jof(tl, .t )dt,...dt,

n! —t
—T—ne utk et 1j j j f(t,---.t )dt,...dt
= E[F(uTk _uTk71)| T= n]

_ T s _
= E[Fka_lutdu N, = n}

Then E[D! f(T,,---,T,)|N; =n]= E|:f(T17“"Tn)(ZuT

this ends the proof.

Now we can give the proof of Prop. 6.

.
Proof. a) We have using Lemma. 1 for any U € H such that .[Ol]tdt =0,

Elloy, -0 Do = 2 Ellgy, - DUF IN: = 11PNy =1)
L, _»E[D;'F, IN; =n]P(N; =n)
- Eb{NT=n}Fn5N (W) N; =n[P(N; =n)

= Eflyy, w0 )]
Thus,

E[D F] - E[z {Np=n} DuN Fn]
=S Bl -y F5" @)= EIFS™ @)
n=1
b) Using the chain rule of ESN and a) we obtain

ElcD!'F|= E[D! (FG) - FD!'G|= E[F(G5" (u) - D'G)]

The proof is completed.
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